

REPORT issued by an Accredited Testing Laboratory

Contact person Helena Nakos Energy Technology +46 10 516 53 34 Helena.Nakos@sp.se
 Date
 Reference
 Page

 2014-08-12
 4P01457-01 rev.1
 1 (6)

 $\overset{\circ}{\xrightarrow{}} \overset{\mathsf{N} \ \mathsf{E} \ \mathsf{D}_{\mathcal{A}}}{\underset{\mathsf{C} \ \mathsf{C}}{\xrightarrow{}}} \overset{\circ}{\underset{\mathsf{E} \ \mathsf{D} \ \mathsf{I} \ \mathsf{T} \ \mathsf{E}}{\xrightarrow{}}} \overset{\circ}{\underset{\mathsf{I} \ \mathsf{D} \ \mathsf{I} \ \mathsf{T} \ \mathsf{E}}{\xrightarrow{}}} \overset{\circ}{\underset{\mathsf{I} \ \mathsf{D} \ \mathsf{I} \ \mathsf{T} \ \mathsf{E} \ \mathsf{C}}{\xrightarrow{}}} \overset{\circ}{\underset{\mathsf{I} \ \mathsf{D} \ \mathsf{I} \ \mathsf{T} \ \mathsf{E} \ \mathsf{C}}{\xrightarrow{}}} \overset{\circ}{\underset{\mathsf{I} \ \mathsf{D} \ \mathsf{I} \ \mathsf{T} \ \mathsf{E} \ \mathsf{C}}{\xrightarrow{}}} \overset{\circ}{\underset{\mathsf{I} \ \mathsf{D} \ \mathsf{I} \ \mathsf{T} \ \mathsf{E} \ \mathsf{C}}{\xrightarrow{}}} \overset{\circ}{\underset{\mathsf{I} \ \mathsf{D} \ \mathsf{I} \ \mathsf{T} \ \mathsf{E} \ \mathsf{C} \$

Magnus Larsson Danfoss Värmepumpar AB Box 950 671 29 ARVIKA Sweden

Test of air-to-water heat pump for EN 14825

(7 appendices)

Work requested

Testing of an air-to-water heat pump in accordance to EN14825:2013, to determine the seasonal coefficient of performance, SCOP. The heat pump was tested for the average climate, and for both low temperature and high temperature applications. Additional test conditions according to EN 14511 were also performed.

Item for testing

Type of heat pump:	Air/Water, fixed capacity type, new heat pump
Manufacturer:	Danfoss Värmepumpar AB
Type designation:	Thermia Atec HP 9
Serial number, heat pump:	086U936026480707
Cold heat transfer medium:	Air
Warm heat transfer medium:	Water
Refrigerant:	R407C, 4.3 kg
Dimensions (width x depth x height):	856 x 510 x 1272 mm
Weight (empty):	131 kg

The heat pump was delivered from the manufacturer to SP's test laboratory in February 2014. No damage could be seen on the unit when visually inspected.

Place and date of testing

The heat pump was installed by SP following the instructions from the manufacturer. The heat pump was tested at SP at the department of Energy Technology during March 2014.

Test methods

The space heating performance of the heat pump was tested in accordance with EN 14825:2013, EN 14511-2:2013 and EN 14511-3:2011. Testing and rating at part load conditions, calculation of seasonal performance and determination of the energy consumption at thermostat off mode, standby mode, off mode, crankcase heater mode and compressor off mode were carried out in accordance with EN 14825:2013. Performance testing was performed for the standard European climate, as defined in EN 14825, average (A) at test points as shown in table 1 and table 2. The heat pump has variable outlet temperature, and a heat curve based on the outdoor temperature. For the test points where the heat pump's heating capacity is higher than what is required, the outlet temperature during the performance test is corrected according to eq. 15 in EN 14825 and the coefficient of performance is corrected, in accordance

SP Technical Research Institute of Sweden

Postal address SP Box 857 SE-501 15 BORÅS Sweden Office location Västeråsen Brinellgatan 4 SE-504 62 BORÅS Phone / Fax / E-mail +46 10 516 50 00 +46 33 13 55 02 info@sp.se

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

to EN 14825, using a degradation coefficient, Cc. Heating load less than 100% of the building's heating demand is referred to as part-load ratio.

Table 1 Space heating performance testing and part-load ratio in accordance with table 12 presented in EN 14825 for seasonal performance calculations for average climate (A) and low temperature application.

	Average		Outdoor heat exchanger	Indoor heat exchanger
Test point	Part-load ratio ¹	Part- load ratio %	Outdoor air Inlet dry bulb (wet bulb) temperature, °C	Inlet/outlet temperatures Variable outlet °C
А	$(-7-16)/(T_{\text{designh}}^2-16^3)$	88	-7(-8)	^a /34
В	(+2-16)/(T _{designh} -16)	54	2(1)	^a /30
С	$(+7-16)/(T_{designh}-16)$	35	7(6)	^a /27
D	$(+12-16)/(T_{designh}-16)$	15	12(11)	^a /24
E	(TOL -16)/(T _{designh} -	16)	TOL	Variable outlet shall be calculated by interpolation or extrapolation from the temperatures which are closest to the TOL. ^a
F	$(T_{biv}^4-16)/(T_{designh}-1)$	6)	${ m T_{biv}}$	Variable outlet shall be calculated by interpolation from the upper and lower temperatures which are closest to the bivalent temperature.

¹Formula for calculating the part-load ratio of the building's maximum heating load at a specific temperature condition

² Reference design temperature condition for heating, $T_{designh} = -10^{\circ}C$ for average climate

³ Outdoor air dry bulb temperature, at this temperature the building's heating demand is zero

⁴ Lowest outdoor air dry bulb temperature at which the heat pump is capable of covering the total heating demand of the building, $T_{biv} = +2^{\circ}C$ maximum value for average climate

^a With the water flow rate as determined at the standard rating conditions given in EN14511-2 at 30/35 conditions

Table 2 Space heating performance testing and part-load ratio in accordance with table 18 presented in EN 14825 for seasonal performance calculations for average climate (A) and high temperature application.

	Average		Outdoor heat exchanger	Indoor heat exchanger
				Inlet/outlet
Test point	Part-load ratio ¹	Part- load ratio %	Inlet dry bulb (wet bulb) temperature, °C	Variable outlet °C
А	$(-7-16)/(T_{\text{designh}}^2-16^3)$	88	-7(-8)	^a /52
В	$(+2-16)/(T_{designh}-16)$	54	2(1)	^a /42
С	(+7-16)/(T _{designh} -16)	35	7(6)	^a /36
D	$(+12-16)/(T_{designh}-16)$	15	12(11)	^a /30
E	(TOL -16)/(T _{designh} -	16)	TOL	Variable outlet shall be calculated by interpolation or extrapolation from the temperatures which are closest to the TOL. ^a
F	(T _{biv} ⁴ -16)/(T _{designh} -1	6)	${ m T_{biv}}$	Variable outlet shall be calculated by interpolation from the upper and lower temperatures which are closest to the bivalent temperature.

¹ Formula for calculating the part-load ratio of the building's maximum heating load at a specific temperature condition

² Reference design temperature condition for heating, $T_{designh} = -10^{\circ}C$ for average climate

³Outdoor air dry bulb temperature, at this temperature the building's heating demand is zero

⁴ Lowest outdoor air dry bulb temperature at which the heat pump is capable of covering the total heating demand of the building, $T_{biv} = +2^{\circ}C$ maximum value for average climate

^a With the water flow rate as determined at the standard rating conditions given in EN14511-2 at 47/55 conditions

The space heating performance of the heat pump was also tested in accordance with EN 14511 and the certification reference HARP, at test points as shown in table 3. Results, with measured and calculated data shown in tabular form, are found in appendix 4.

Table 3.	Test conditions f	for space he	eating test in	accordance to	EN 14511	and HARP
		1	0			

	Inlet dry bulb (wet bulb)	Warm heat transfer medium,
Test point	temperature,	inlet/outlet temperature,
_	°C	°C
A7/W35	7(6)	30/35
A2/W35	2(1)	a/35
A7/W45	7(6)	40/45

a: Tested with heat transfer media flow rates obtained at test condition A7/W35

Test equipment

The following test equipment was used:

Name	SP inventory no.
Test rig	LV3
Data acquisition system	900 071, 201 417
Electric power meter	901 478, 202 720, 901 995
Flow meters	701 277
Differential pressure sensors	202 865
Dew point sensor	200 428, 200 358
Resistive temperature sensors, Pt 100.	-

Heat pump settings for the space heating performance tests

The heat pump was installed by personnel from SP following the instructions from the manufacturer. The following settings were used during the measurements:

During the performance test maximum heat curve was used to keep the compressor running continuously

There is no internal warm heat transfer medium circulation pump in the unit.

Results from space heating performance testing

The test results given in this report relate only to the specific item tested and under the specific conditions described, with the specific equipment named and at the specified settings. Calculations are based on the results from the laboratory tests according with EN 14825:2013 which in its turn refers to EN 14511:2011 part 3 in a large scale when denoting the test method. The water flow rate was determined at the standard rating conditions given in EN14511-2:2013 at 30/35 conditions for the low temperature application and at 47/55 conditions for the high temperature application. Results are defined according to EN 14825.

The bivalent temperature, T_{biv} , was declared by the manufacturer. At T_{biv} the heat pump is capable of covering the total heating demand of the building. The heating demand of the building, $P_{designh}$, is determined by dividing the heating capacity measured at T_{biv} , by the formula for calculating the part-load ratio at the same temperature condition. For the formula for calculating the part-load ratio see table 1 and 2.

Low temperature a clin	application, average nate	High temperature a clin	application, average nate
T _{biv} , ℃	P _{designh} , kW	T _{biv} , °C	P _{designh} , kW
-5	7.24	-4	7.59

Table 3 $T_{bivalent}$ and $P_{designh}$ for the heat pump tested.

The unit was tested for test point E at -10° C for both the low and high temperature application in accordance to EN 14825. EN 14825 states if the declared TOL is lower than $T_{designh}$, it may be assumed that TOL is equal to $T_{designh}$.

Results from capacity tests

Table 4 below presents the total thermal output power, P_H , and the corresponding coefficient of performance, COP, at corresponding test points A-F in table 1 and table 2. The values presented are the results from the laboratory tests according with EN 14825 and EN 14511 for the average climate. The operating conditions are presented in table 1 and table 2.

<u> </u>							
	Low temperature application, average climate			High temperature application, average climate			
Test point:	P _H (kW)	$P_E(kW)$	COP	P _H (kW)	$P_E(kW)$	COP	
А	5.52	1.70	3.24	5.23	2.23	2.35	
В	6.80	1.78	3.83	6.79	2.14	3.18	
С	7.58	1.76	4.30	8.71	2.09	4.17	
D	10.44	1.77	5.90	10.16	1.97	5.16	
Е	4.95	1.70	2.92	4.64	2.30	2.02	
F	5.85	1.69	3.47	5.84	2.18	2.69	

Table 4 Results from the performance tests

¹For the test points where the heat pump's heating capacity is higher than what is required, the outlet temperature during the performance test was corrected according to eq. 15 in EN14825. Please see Appendix 1 for measured test data.

Results for measurements of power consumption during modes other than "active mode"

Table 5 below presents the measurements of the energy consumption at thermostat off mode, standby mode, off mode, crankcase heater mode and compressor off mode. The compressor off mode is needed for the calculation of the Cc-factor which is used for recalculation of COP at the test points where the heat pump's heating capacity is higher than what is required. Compressor off was therefore measured after test points B-D.

Tuble e Results for power con	Tuble & Results for power consumption during modes other than derive mode						
	Low temperature application, average climate	High temperature application, average climate					
Thermostat off ¹ (W)	10	3					
Standby mode (W)	7	7					
Off mode (W)	7	7					
Crankcase heater mode ¹ (W)	0	0					
Compressor off ² (W), For	Low temperature application,	High temperature application,					
test point:	average climate	average climate					
В	80	36					
С	64	23					
D	42	22					

Table 5 Results for power consumption during modes other than active mode

¹ In accordance to EN 14825 the standby power consumption is deducted from the measured total energy consumption of the unit during thermostat off mode and during crankcase heater mode.

 $^{^{2}}$ Not defined in EN 14825. However, it is needed when calculating the Cc-factor according to eq.18. According to EN 14825, "The electrical power input during the compressor off state of the unit is measured when the compressor is switched off for at least 10 min." The heat curve was lowered until the compressor stopped. Corrections were made for power input of liquid pump, according to EN14511-3:2011.

Results for SCOP

The results obtained from the testing was used to calculate the values of the seasonal coefficient of performance, SCOP, which are presented in table 6. The results are based on the T_{biv} and $P_{designh}$ presented in table 3.

Table 6 SCOP	results for lo	v temnerature ar	nd high temperat	ure applications
Table 0 SCOF	results for to	w temperature ar	iu ingli temperat	ure applications.

Low tempe	Low temperature application, average climate			High temperature application, average climate			
T_{biv}	$\mathbf{P}_{\text{designh}}$	SCOP	$T_{\rm biv}$	$P_{designh}$	SCOP		
-5	7.24	3.70	-4	7.59	3.20		

More detailed presentations of the tests, with measured and calculated results shown in tabular form, are found in appendix 1.

Revision

In this revision test results for HARP have been added.

SP Technical Research Institute of Sweden Energy Technology - Building Services Engineering

Performed by Examined by

Helena Nakos

Johan Larsson

Appendices

- 1. Result, technical data sheet in accordance to EN 14825
- 2. Result space heating performance testing, low temperature application
- 3. Result, space heating performance testing, high temperature application
- 4. Results, space heating performance testing in accordance with EN 14511 and the certification reference HARP
- 5. List of components
- 6. Photographs
- 7. Uncertainty of measurement
- 8. Nomenclature

Appendix 1

Results, technical data sheet in accordance to EN 14825

Model name			The	rmia ATEC	HP 9		
						Low	High
						temp.	temp.
						appli-	appli-
Function	Heating			Average '	·Δ"	Ve	cation
Capacity control	Fixed			riverage	11	Ye	25
Design load	Heating	Averag	re	Pdesignh		7 24	7 59
	licuting	TTYOTUE	,•	SCOP _{on} ¹		3.74	3.23
Seasonal Efficiency	Heating	Averag	ge	SCOP _{net} ²		3.82	3.33
	_	_		SCOP ³		3.70	3.20
		1	Tj = -7	°C	P _H	5.52	5.23
			Tj = 2 °	°C	P _H	6.80	6.79
			Tj = 7	°C	P _H	7.58	8.71
Heating capacity at outdoor temperature Ti	Heating, Av	erage	Tj = 12	°C	P _H	10.44	10.16
outdoor temperature 1j			Tj = biv	valent	D	5.85	5.84
			temperature Ti – operation		P _H		
			limit, -10 °C		P _H	4.95	4.64
	pefficient of		$Tj = -7 \ ^{\circ}C$		COP	3.24	2.35
			$Tj = 2 \ ^{\circ}C$		COP	3.83	3.18
Coefficient of			$Tj = 7 \ ^{\circ}C$		COP	4.30	4.17
heating at outdoor	Heating, Av	erage	Tj = 12	°C	COP	5.90	5.16
temperature Tj			Tj = biv tempera	valent ature	COP	3.47	2.69
			Tj = operation			2 92	2.02
D. 1	TT A		limit, -10 °C		COP	2.72	2.02
Bivalent temperatures	Heating, Av	erage	Tbivale	ent		-5	-4
temperatures	Heating, Av	erage	TOL			-10 ⁴	-10 ⁴
Seasonal electricity consumption	Heating, Av	erage	QHE/A	QHE/A		2742	3317
	Off-mode ⁵					7	7
Modes other than	Standby mo	de ⁶				7	7
"active mode"	Thermostat-	off mod	le ⁷			10	3
	Crankcase h	leater m	ode ⁸	0 0			
Contact details for	Name manu	facturer		Danfoss Värmepumpar AB			
obtaining more				Snickaregatan 1			
information	Address				67134 Sw	Arvıka eden	
	1				D W	Cuch	

Date Reference 2014-08-12 4P01457-01 rev.1

Page 2 (2)

Appendix 1

 1 SCOP_{on} is the heat pump's average seasonal performance in active mode, presenting the hours the heat pump's heating performance is activated 2 SCOP_{net} is the heat pump's average seasonal performance in active mode excluding electricity consumption for

² SCOP_{net} is the heat pump's average seasonal performance in active mode excluding electricity consumption for thermostat off, standby, off mode, crankcase heating mode and that of an electrical back up heater

 3 SCOP is the units total seasonal performance factor representing the whole heating season

 $\frac{4}{2}$ Set to the same value as $T_{designh}$

 5 A mode where the unit is completely switched off and is not capable to be reactivated by a control device or a timer

⁶ A mode where the unit is partially switched off and can by a control device or timer be reactivated ⁷ A mode corresponding to the hours with no heating load, but where the heating function of the unit is switched on but the unit is not operational as there is no heating load

⁸ A mode corresponding to the hours where a heating device is activated to avoid refrigerant to migrating to the compressor in order to limit the refrigerant concentration in oil at compressor start

Appendix 2

Results, space heating performance in accordance to EN 14825, average climate and low temperature application

Operating point	_	1 30/35	A -/34	B 27,8/-	C 25,6/-	D 23,4/-	E -/35	F -/33,11
	°C	7/6w	-7/-8w	2/1w	7/6w	12/11w	-10/-11w	-5/-6w
Data collection period	min	70	70	180	180	70	70	70
Transient		No	No	Yes	Yes	No	No	No

Temperature	°C							
Heat transfer medium, hot, outlet	t _{w2}	35.0	34.1	31.7	29.9	29.3	35.2	33.2
Heat transfer medium, hot, inlet	t _{w1}	30.0	30.9	27.8	25.5	23.3	32.4	29.8
Dry bulb air temperature	t _{a5}	7.0	-7.0	2.1	6.9	12.1	-10.0	-4.9
Wet bulb air temperature	t _{wb}	5.9	-7.8	1.1	5.9	10.9	-11.0	-5.9
Flow	m³/h							
Volume flowrate of heat transfer medium. Hot	$q_{\rm w}$	1.51	1.50	1.50	1.50	1.50	1.50	1.50
Pressure difference	kPa							
Heat tranfer medium, hot	Dp _w	-7.4	-7.4	-7.3	-7.4	-7.4	-7.4	-7.4
······	I I W							
Electrical power	kW						[
Total	P _T	1.952	1.671	1.745	1.733	1.739	1.666	1.655
Calculated quantities								
Thermal power	kW	0.707	5 405	6.7.60	7.550	10.405	4.022	5.022
Total thermal output power to the heat sink	P _{1hps}	8.797	5.485	6./68	7.550	10.405	4.923	5.823
Coefficient of performance	(-)							
total	COP _{hps}	4.51	3.28	3.88	4.36	5.98	2.96	3.52
Correction in accordance with EN 14511 Correction, pump power	W							
Heat transfer medium pump, hot	P _{epw,s}	30	30	30	30	30	30	30
Electrical power after correction	kW							
Total	PE	1.982	1.701	1.775	1.763	1.769	1.695	1.685
Thermal power after correction	kW							
delivered	Pu	8.827	5.515	6.798	7.583	10.435	4.953	5.853
	- 11				,			
COP after correction	(-)						1	
Total	COP	4.45	3.24	3.83	4.30	5.90	2.92	3.47
Heat demand of the house and average outlet	temperatu	re accord	ling to EN1	4825				
T _{biv}	-5°C							
P _{designh}	7.24 kW			·				
Phouse:	kW		6.41	3.90	2.51	1.11	7.24	5.85
Tout, average according to eq.15 in 14825				30.0	26.9	23.9		

Appendix 3

Results, space heating performance in accordance to EN 14825, average climate and high temperature application

Operating point	-	1	A	В	С	D	Ε	F
		47/55	-/52	38,1/-	33,5/-	28,9/-	-/55	-/48,67
	°C	7/6w	-7/-8w	2/1w	7/6w	12/11w	-10/-11w	-4/-5w
Data collection period	min	70	70	180	70	70	70	70
Transient		No	No	Yes	No	No	No	No
T								
Temperature Heat transfer medium, hot, outlet	<u>د</u> ا د .	55.0	52.0	11.6	41.0	38.8	55.2	187
Heat transfer medium, hot, outlet	t .	47.0	47.0	38.1	33.5	29.0	50.7	43.1
Dry hulb air temperature	t.c	7.0	-7.0	2.1	69	12.1	-10.1	-3.9
Wet bulb air temperature	tub	5.9	-7.9	1.1	5.9	10.9	-11.0	-5.0
	Cwb	017			0.0	1000	1110	
Flow	m³/h		1	1	r	1	1	
Volume flowrate of heat transfer medium. Hot	q_{w}	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pressure difference	kPa							
Heat tranfer medium, hot	Dn	-27	-27	-27	-2.8	-2.8	-27	-27
Teat trainer medium, not	DPw	2.7	2.7	2.7	2.0	2.0	2.7	2.7
Electrical power	kW							
Total	P _T	2.694	2.219	2.124	2.077	1.956	2.292	2.165
Calculated quantities								
Thermal power	kW							
Total thermal output power to the heat sink	P _{1hps}	8.220	5.221	6.778	8.694	10.146	4.631	5.833
Coefficient of performance	(-)							
Total	COPhans	3.05	2.35	3.19	4.19	5.19	2.02	2.69
	001 lips	2102	2.00	0.17		0.17	2102	
Correction in accordance with EN 14511								
Correction, pump power	W		1		n		1	1
Heat transfer medium pump, hot	P _{epw,s}	11	11	11	11	11	11	11
Electrical power after correction	LW							
Total	P _n	2 705	2 230	2 135	2.088	1 967	2 303	2 175
10(4)	ΤE	2.703	2.230	2.133	2.000	1.707	2.303	2.173
Thermal power after correction	kW							
delivered	P _H	8.229	5.232	6.788	8.705	10.157	4.641	5.843
COP after correction	(-)	-	-				-	
Total	COP	3.04	2.35	3.18	4.17	5.16	2.02	2.69

Tout, average according to eq.15 in 14825

-4°C

7.59 kW kW

6.72

4.09

42.0

2.63

36.0

1.17

30.1

7.59

5.84

 T_{biv}

 P_{designh}

Phouse:

Appendix 4

Results, space heating performance testing in accordance with EN 14511 and the certification reference HARP

Operating point				
	°C	7/6w 20/25	2/1w	7/6w
	C	30/33	-/33	40/45
Data collection period	min	70	107	70
Transient		No	Yes	No
Temperature	°C			
Heat transfer medium, hot, outlet	t _{w2}	35.0	34.5	45.0
Heat transfer medium, hot, inlet	t _{w1}	30.0	30.6	40.0
Dry bulb air temperature	t _{a5}	7.0	2.1	7.0
Wet bulb air temperature	t _{wb}	5.9	1.1	6.1
Flow	m3/h			
Volume flowrate of heat transfer medium.	m7n			
Hot	$q_{\rm w}$	1.51	1.50	1.48
Pressure difference	kPa			
Heat tranfer medium, hot	Dp _w	-7.4	-5.3	-6.6
· · · · · · · · · · · · · · · · · · ·		•	•	•
Electrical power	kW		1	1
Total	P _T	1.952	1.810	2.252
Calculated quantities				
Thermal power	kW			
Total thermal output power to the heat sink	P _{1hps}	8.797	6.722	8.401
Coefficient of performance	(-)			
total	COP _{hps}	4.51	3.71	3.73
Correction in accordance with EN 14511				
Correction nump power	W			
Heat transfer medium pump, hot	Penws	30	24	27
Teur duistor mourum pump, not	r epw,s	50	21	27
Electrical power after correction	kW			
Total	PE	1.982	1.834	2.280
Thermal newsr after correction	ĿW			
delivered		0 0 77	6746	9 1 2 9
denvered	r _H	0.827	0.740	0.428
COP after correction	(-)			
Total	СОР	4.45	3.68	3.70

Appendix 5

List of components Below information is given by the manufacturer.

Type: Thermia Atec 9		Year of production:
		2014
Part	Manufacturer, type	Model number
Compressor:	Copeland	ZH21
Expansion valve:	Danfoss	UKV18051
Evaporator:	Lloyd Coil	4 row
Condenser:	SWEP	B25*40
Refrigerant: (type, charger)	R407C	4.3 Kg
Control system:	Inbuilt controller Software v2.2.1	
Dryer filter:	Danfoss	DMB163s
High pressure switch:	Saginomya	31 bar
Low pressure switch:	Pressure transmitter 0.4 bar(g)	
Fan	EBM-Papst	S3G 500-AF4855

Appendix 6

Photographs

Figure 1 Heat pump, outdoor unit

Appendix 6

0.0 Box 950 SE-67129 Arv	ka	Pair	V	
Sweden				
Atec HP 9 Outdoor unit				
Heat Pump		(EG	P
Source of heat Max	MPa	0.1	1	R
System of heat Max	MPa	0.3	1	0
Source of heat Min/Max	°C	-20/	+45	
Refrigerant Type		* R40	IC.	
Operation Pressure Min/Max	MPa	0.05	3 10	
Refrigerant	Kg	4.3		
Connection				
Electric connection	V	400 3	N~50 Hz	
Power input Total	kW	2.9		
Power input Heat pump	kW	2.5		
Power input Auxiliary Heater	kW			
Pressure Vessel				
Volume Sec/Prim	1			
Test Pressure Sec/Prim	MPa	**		
Design Temp	MPa	••		
- congrit remp	°C	••		
Rating condition EN 14511	80	0/W35	A211/35	704/25
Heating capacity	kW		6.22	9.50
Coefficient of Performance			3 40	0.05
gases covered by the Kyoto Protocol			0.40	4.36
mermetically sealed system				
Seriel				
Serial No	0860	9360	26480	707

Figure 2 Name plate, outdoor unit

Appendix 7

Uncertainty of measurement

The uncertainty of measurement is calculated according EA-4/16 with a coverage factor, k = 2. The results from testing are based partly on direct measurements and partly on calculations. The estimates apply to the total uncertainties including both systematic and random uncertainties. Unit terms and designations are as given in Appendix 7.

Measured data			
Temperatures		Differential pre	ssures
t _{wo} , t _{wi}	$\pm 0.1 \text{ K}$	$\Delta p_{ m w}$	± 1 kPa
$t_{\rm wo}-t_{\rm wi}$	$\pm 0.05 \text{ K}$		
t _{a5}	$\pm 0.15 \text{ K}$		
t _{wb}	$\pm 0.4 \text{ K}$		
Flows		Electric Power	
$q_{ m w}$	±1%	P _T	±0.5 %
		Pauxilary	$\pm 1 \mathrm{W}$
Table values			
Density			
$ ho_{\rm w}$	$\pm 1 \text{ kg/m}^3$	(source: SP REPO	ORT 1994:01)
Specific heat capacity a	at constant pressure		
c _{pw}	$\pm 10^{-4}$ kJ/(kg. K)	(source: SP REPO	ORT 1994:01)
Calculated data			
P_{1hps}, P_{H}	± 2.4 %		
COP _{hps} , COP	± 2.5 %		

SP SP SP SP

Appendix 8

Nomenclature

Designati	ions for EN14825:					
SCOP	The uni	ts total seas	onal coefficient of performance representing the			
SCOP _{on}	The ave (present	The average seasonal coefficient of performance in active mode (presenting the hours the heat pump's heating performance is activated)				
SCOP _{net}	The ave excludin thermos	rage season ng electricit stat off, stan	al coefficient of performance in active mode y consumption from supplementary electric heater, dby, off mode, and crankcase heating mode			
Р	Power					
P_{designh}	Design	load at T _{desig}	_{gnh} conditions			
Т	Temp	erature				
T_{designh}	Referen	ce design te r air temper	mperature condition for heating			
T_{biv}	Bivalen building	t temperatur gs heating lo	re, where the unit is capable of covering 100% of the bad			
TOL	Operati	on limit tem	perature			
Designati	ions for capacity tests:					
Beteckni	ingar		Designations			
СОР	Värmefaktor		Coefficient of performance			
	v ar incrastor		Coefficient of performance			
СОР	Värmefaktor; total; rumsupp korrigerad enligt EN 14511	ovärmning;	Coefficient of performance; total; space heating; corrected according to EN 14511			
COP COP _{hps}	Värmefaktor; total; rumsupp korrigerad enligt EN 14511 Värmefaktor; total. rumsupp	ovärmning; ovärmning	Coefficient of performance; total; space heating; corrected according to EN 14511 Coefficient of performance. space heating for heat pump system			
COP COP _{hps}	Värmefaktor; total; rumsupp korrigerad enligt EN 14511 Värmefaktor; total. rumsupp El- och värmeeffekt	ovärmning; ovärmning	Coefficient of performance; total; space heating; corrected according to EN 14511 Coefficient of performance. space heating for heat pump system Power: electric (active) or thermal			
COP COP _{hps}	Värmefaktor; total; rumsupp korrigerad enligt EN 14511 Värmefaktor; total. rumsupp El- och värmeeffekt	ovärmning; ovärmning	Coefficient of performance; total; space heating; corrected according to EN 14511 Coefficient of performance. space heating for heat pump system Power: electric (active) or thermal			
COP COP _{hps} P P _E	Värmefaktor; total; rumsupp korrigerad enligt EN 14511 Värmefaktor; total. rumsupp El- och värmeeffekt Effekt; el; totalt tillförd till värmepumpsystemet; korrig EN 14511	ovärmning; ovärmning erad enligt	Coefficient of performance; total; space heating; corrected according to EN 14511 Coefficient of performance. space heating for heat pump system Power: electric (active) or thermal Power; electrical; total input to heat pump system; corrected according to EN 14511			
COP COP _{hps} P P _E P _H	Värmefaktor; total; rumsupp korrigerad enligt EN 14511 Värmefaktor; total. rumsupp El- och värmeeffekt Effekt; el; totalt tillförd till värmepumpsystemet; korrig EN 14511 Effekt; värme; från värmepu till värmesänka. korrigerad e	ovärmning; ovärmning erad enligt umpsystem enligt	Coefficient of performance; total; space heating; corrected according to EN 14511 Coefficient of performance. space heating for heat pump system Power: electric (active) or thermal Power; electrical; total input to heat pump system; corrected according to EN 14511 Heating capacity; from heat pump system to heat sink; corrected according to EN14511			
COP COP _{hps} P P _E P _H	Värmefaktor; total; rumsupp korrigerad enligt EN 14511 Värmefaktor; total. rumsupp El- och värmeeffekt Effekt; el; totalt tillförd till värmepumpsystemet; korrig EN 14511 Effekt; värme; från värmepu till värmesänka. korrigerad e	ovärmning; ovärmning erad enligt umpsystem enligt	Coefficient of performance; total; space heating; corrected according to EN 14511 Coefficient of performance. space heating for heat pump system Power: electric (active) or thermal Power; electrical; total input to heat pump system; corrected according to EN 14511 Heating capacity; from heat pump system to heat sink; corrected according to EN14511			

 Date
 Reference
 Page

 2014-08-12
 4P01457-01 rev.1
 2 (3)

Appendix 8

	till värmesänka	system to heat sink
P _T	Effekt; el; totalt tillförd till värmepumpsystemet	Power; electrical; total input to the heat pump system
q	Volymflöde	Volume flow rate
$q_{\rm w}$	Volymflöde; värmeöverförande medium; varm	Volume flow rate; heat transfer medium; warm
t	Temperatur	Temperature
t _{amb}	Temperatur; omgivning	Temperature. ambient
t _{a5}	Temperatur; värmeöverförande medium; kall	Temperature; heat transfer medium; cold
t _w	Temperatur; värmeöverförande medium; varm	Temperature; heat transfer medium; warm
C _p	Specifik värmekapacitet	Specific heat capacity
c _{pw}	Specifik värmekapacitet. värmeöverförande medium; varm	Specific heat capacity; heat transfer medium; warm
$\Delta \mathbf{p}$	Differenstryck	Differential pressure
$\Delta p_{\rm w}$	Differenstryck; yttre; värmeöverförande medium; varm	Differential pressure; external; heat transfer medium; warm
ρ	Densitet	Density
$ ho_{\rm w}$	Densitet. värmeöverförande medium; varm	Density; heat transfer medium; warm

Appendix 8

Index

Indices

amb	Omgivning	Ambient
c	Värmeöverförande medium; kall	Heat transfer medium; cold
def	Avfrostning	Defrost
e	Elektrisk	Electrical
h	Uppladdning	Heating up period
hp	Värmepump	Heat pump
hps	Värmepump system	Heat pump system
i	In till värmepump	Inlet to heat pump
m	Motor; kompressor	Motor; compressor
max	Maximal	Maximum
max o	Maximal Ut från värmepump	Maximum Outlet from heat pump
max o p	Maximal Ut från värmepump Pump	Maximum Outlet from heat pump Pump
max o p s	Maximal Ut från värmepump Pump Tomgång	Maximum Outlet from heat pump Pump Stand by
max o p s s	Maximal Ut från värmepump Pump Tomgång Standardiserad	Maximum Outlet from heat pump Pump Stand by Standardised
max o p s s t	Maximal Ut från värmepump Pump Tomgång Standardiserad Tappning varmvatten	Maximum Outlet from heat pump Pump Stand by Standardised Draw off sanitary water; warm
max o p s s t w	Maximal Ut från värmepump Pump Tomgång Standardiserad Tappning varmvatten Värmeöverförande medium; varm	Maximum Outlet from heat pump Pump Stand by Standardised Draw off sanitary water; warm Heat transfer medium; warm
max o p s s t w wc	Maximal Ut från värmepump Pump Tomgång Standardiserad Tappning varmvatten Värmeöverförande medium; varm	Maximum Outlet from heat pump Pump Stand by Standardised Draw off sanitary water; warm Heat transfer medium; warm